Package: fasta 0.1.0

fasta: Fast Adaptive Shrinkage/Thresholding Algorithm

A collection of acceleration schemes for proximal gradient methods for estimating penalized regression parameters described in Goldstein, Studer, and Baraniuk (2016) <arxiv:1411.3406>. Schemes such as Fast Iterative Shrinkage and Thresholding Algorithm (FISTA) by Beck and Teboulle (2009) <doi:10.1137/080716542> and the adaptive stepsize rule introduced in Wright, Nowak, and Figueiredo (2009) <doi:10.1109/TSP.2009.2016892> are included. You provide the objective function and proximal mappings, and it takes care of the issues like stepsize selection, acceleration, and stopping conditions for you.

Authors:Eric C. Chi [aut, cre, trl, cph], Tom Goldstein [aut], Christoph Studer [aut], Richard G. Baraniuk [aut]

fasta_0.1.0.tar.gz
fasta_0.1.0.zip(r-4.5)fasta_0.1.0.zip(r-4.4)fasta_0.1.0.zip(r-4.3)
fasta_0.1.0.tgz(r-4.5-any)fasta_0.1.0.tgz(r-4.4-any)fasta_0.1.0.tgz(r-4.3-any)
fasta_0.1.0.tar.gz(r-4.5-noble)fasta_0.1.0.tar.gz(r-4.4-noble)
fasta_0.1.0.tgz(r-4.4-emscripten)fasta_0.1.0.tgz(r-4.3-emscripten)
fasta.pdf |fasta.html
fasta/json (API)

# Install 'fasta' in R:
install.packages('fasta', repos = c('https://echi.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda-Forge:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 6 scripts 587 downloads 848 mentions 1 exports 0 dependencies

Last updated 7 years agofrom:d94d6efc93. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 20 2025
R-4.5-winOKFeb 20 2025
R-4.5-macOKFeb 20 2025
R-4.5-linuxOKFeb 20 2025
R-4.4-winOKFeb 20 2025
R-4.4-macOKFeb 20 2025
R-4.3-winOKFeb 20 2025
R-4.3-macOKFeb 20 2025

Exports:fasta

Dependencies: